Kernelization and Complexity Results for Connectivity Augmentation Problems

نویسندگان

  • Jiong Guo
  • Johannes Uhlmann
چکیده

Connectivity augmentation problems ask for adding a set of at most k edges whose insertion makes a given graph satisfy a specified connectivity property, such as bridge-connectivity or biconnectivity. We show that, for bridge-connectivity and biconnectivity, the respective connectivity augmentation problems admit problem kernels with O(k) vertices and links. Moreover, we study partial connectivity augmentation problems, naturally generalizing connectivity augmentation problems. Here, we do not require that, after adding the edges, the entire graph should satisfy the connectivity property, but a large subgraph. In this setting, two polynomial-time solvable connectivity augmentation problems behave differently, namely, the partial biconnectivity augmentation problem remains polynomial-time solvable whereas the partial strong connectivity augmentation problem becomes W[2]-hard with respect to k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Bounds for Path and Cycle Problems

Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show p...

متن کامل

Date Dr Hab. Šukasz Kowalik Capacitated Dominating Set, Minimum Maximal Irredundant Set Acm Classication: F.2.2, G.2.1, G.2.2. 4 Chapter 1

All NP-complete problems can be solved in exponential time by enumerating the space of possible solutions. In the area of moderatelyexponential algorithms, we seek for exact algorithms for NP-complete problems that are faster than the naive ones. Surprisingly, often such results exist and their development leads to a good insight into a considered problem. In the rst part of this dissertation w...

متن کامل

Polynomial Kernels for Weighted Problems

Kernelization is a formalization of efficient preprocessing for NP-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number n of items. We answer both questions affirmatively by using an algorithm for compr...

متن کامل

Kernelization Hardness of Connectivity Problems in d-Degenerate Graphs

A graph is d-degenerate if its every subgraph contains a vertex of degree at most d. For instance, planar graphs are 5-degenerate. Inspired by recent work by Philip, Raman and Sikdar, who have shown the existence of a polynomial kernel for DOMINATING SET in d-degenerate graphs, we investigate kernelization hardness of problems that include connectivity requirement in this class of graphs. Our m...

متن کامل

On the Kernelization of Global Constraints

Kernelization is a powerful concept from parameterized complexity theory that captures (a certain idea of) efficient polynomial-time preprocessing for hard decision problems. However, exploiting this technique in the context of constraint programming is challenging. Building on recent results for the VERTEXCOVER constraint, we introduce novel “loss-less” kernelization variants that are tailored...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Networks

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2007