Kernelization and Complexity Results for Connectivity Augmentation Problems
نویسندگان
چکیده
Connectivity augmentation problems ask for adding a set of at most k edges whose insertion makes a given graph satisfy a specified connectivity property, such as bridge-connectivity or biconnectivity. We show that, for bridge-connectivity and biconnectivity, the respective connectivity augmentation problems admit problem kernels with O(k) vertices and links. Moreover, we study partial connectivity augmentation problems, naturally generalizing connectivity augmentation problems. Here, we do not require that, after adding the edges, the entire graph should satisfy the connectivity property, but a large subgraph. In this setting, two polynomial-time solvable connectivity augmentation problems behave differently, namely, the partial biconnectivity augmentation problem remains polynomial-time solvable whereas the partial strong connectivity augmentation problem becomes W[2]-hard with respect to k.
منابع مشابه
Kernel Bounds for Path and Cycle Problems
Connectivity problems like k-Path and k-Disjoint Paths relate to many important milestones in parameterized complexity, namely the Graph Minors Project, color coding, and the recent development of techniques for obtaining kernelization lower bounds. This work explores the existence of polynomial kernels for various path and cycle problems, by considering nonstandard parameterizations. We show p...
متن کاملDate Dr Hab. ukasz Kowalik Capacitated Dominating Set, Minimum Maximal Irredundant Set Acm Classication: F.2.2, G.2.1, G.2.2. 4 Chapter 1
All NP-complete problems can be solved in exponential time by enumerating the space of possible solutions. In the area of moderatelyexponential algorithms, we seek for exact algorithms for NP-complete problems that are faster than the naive ones. Surprisingly, often such results exist and their development leads to a good insight into a considered problem. In the rst part of this dissertation w...
متن کاملPolynomial Kernels for Weighted Problems
Kernelization is a formalization of efficient preprocessing for NP-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number n of items. We answer both questions affirmatively by using an algorithm for compr...
متن کاملKernelization Hardness of Connectivity Problems in d-Degenerate Graphs
A graph is d-degenerate if its every subgraph contains a vertex of degree at most d. For instance, planar graphs are 5-degenerate. Inspired by recent work by Philip, Raman and Sikdar, who have shown the existence of a polynomial kernel for DOMINATING SET in d-degenerate graphs, we investigate kernelization hardness of problems that include connectivity requirement in this class of graphs. Our m...
متن کاملOn the Kernelization of Global Constraints
Kernelization is a powerful concept from parameterized complexity theory that captures (a certain idea of) efficient polynomial-time preprocessing for hard decision problems. However, exploiting this technique in the context of constraint programming is challenging. Building on recent results for the VERTEXCOVER constraint, we introduce novel “loss-less” kernelization variants that are tailored...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Networks
دوره 56 شماره
صفحات -
تاریخ انتشار 2007